Transduction mechanisms in vertebrate olfactory receptor cells.
نویسندگان
چکیده
Considerable progress has been made in the understanding of transduction mechanisms in olfactory receptor neurons (ORNs) over the last decade. Odorants pass through a mucus interface before binding to odorant receptors (ORs). The molecular structure of many ORs is now known. They belong to the large class of G protein-coupled receptors with seven transmembrane domains. Binding of an odorant to an OR triggers the activation of second messenger cascades. One second messenger pathway in particular has been extensively studied; the receptor activates, via the G protein Golf, an adenylyl cyclase, resulting in an increase in adenosine 3',5'-cyclic monophosphate (cAMP), which elicits opening of cation channels directly gated by cAMP. Under physiological conditions, Ca2+ has the highest permeability through this channel, and the increase in intracellular Ca2+ concentration activates a Cl- current which, owing to an elevated reversal potential for Cl-, depolarizes the olfactory neuron. The receptor potential finally leads to the generation of action potentials conveying the chemosensory information to the olfactory bulb. Although much less studied, other transduction pathways appear to exist, some of which seem to involve the odorant-induced formation of inositol polyphosphates as well as Ca2+ and/or inositol polyphosphate -activated cation channels. In addition, there is evidence for odorant-modulated K+ and Cl- conductances. Finally, in some species, ORNs can be inhibited by certain odorants. This paper presents a comprehensive review of the biophysical and electrophysiological evidence regarding the transduction processes as well as subsequent signal processing and spike generation in ORNs.
منابع مشابه
Transduction and adaptation in sensory receptor cells.
Sensory transduction shares common features in widely different sensory modalities. The purpose of this article is to examine the similarities and differences in the underlying mechanisms of transduction in the sensory receptor cells for vision, olfaction, and hearing. One of the major differences between the systems relates to the nature of the stimulus. In both the visual and olfactory system...
متن کاملEvidence for multiple calcium response mechanisms in mammalian olfactory receptor neurons.
Olfactory receptor neurons employ a diversity of signaling mechanisms for transducing and encoding odorant information. The simultaneous activation of subsets of receptor neurons provides a complex pattern of activation in the olfactory bulb that allows for the rapid discrimination of odorant mixtures. While some transduction elements are conserved among many species, some species-specificity o...
متن کاملVesicular Diversity and Crowding within the Olfactory Sensory Receptor Neuron
The olfactory sensory receptor neuron (OSRN) is an important cellular component of the vertebrate olfactory system that are responsible for detection and discrimination of different type of chemical cues from the external environment [1]. The neural communication between the sensory receptor cells is generally mediated through vesicles [2]. The fine structural details of OSRN aim to unfold the ...
متن کاملThe electrochemical basis of odor transduction in vertebrate olfactory cilia.
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows posit...
متن کاملCyclic-nucleotide-gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons.
Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide-gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological reviews
دوره 78 2 شماره
صفحات -
تاریخ انتشار 1998